Stephen Wolfram explores the broader picture of what's going on inside ChatGPT and why it produces meaningful text. Discusses models, training neural nets, embeddings, tokens, transformers, language syntax.
Elicit uses language models to help you automate research workflows, like parts of literature review.
Elicit can find relevant papers without perfect keyword match, summarize takeaways from the paper specific to your question, and extract key information from the papers.
Browser-based research platform designed for clarity, comprehensiveness, and collaboration. Create interactive citation graphs of your own research topics.
via CDC We've been tracking retractions of papers about COVID-19 as part of our database. Here's a running list, which will be updated as needed. (For some context on these figures, see this post, our letter in Accountability in Research and the last section of this Nature news article. Also see a note about the…
Edit April 20th, 2021: thanks to Christos Petrou I found a bug in my code. I was considering both "Section" and "Collection" articles as Speical Issue. The whole analysis has been changed to accommodate the new data. I also acknowledged in the text the arguments of Volker Beckmann, who develops a coherent defense of MDPI…
The Free Version of the PDF-XChange Editor is a light weight, easy to use application with many free features including: direct text editing of text-based PDF documents, OCR a PDF, annotations and markup tools, the ability to save and send fillable PDF form data, and free plugins allow easy access to third-party storage sites and servers such as Google Drive & SharePoint. You can also try out licensed features including add/reorder/remove pages, digital signing and much more.
S. Drößler. Kalibrierung der Wissenschaft. Auswirkungen der Digitalisierung auf die wissenschaftliche Erkenntnis, transcript, Bielefeld, 1. Auflage edition, Wie wird Wissen aus den Weiten des digitalen Raums herausgefiltert? Wie wird es generiert und evaluiert? Was wird als Wissen verfügbar gemacht - und was nicht? Die Beiträger*innen des Bandes widmen sich diesen Fragen und untersuchen die Auswirkungen der zunehmenden Digitalisierung auf die Erzeugung, Auswahl und Bewertung wissenschaftlicher Erkenntnis unter den Aspekten der Datafizierung, Publizierung und Metrisierung. Sie bringen Expertisen aus der Philosophie, Informatik, Informations- und Bibliothekswissenschaft ein und reflektieren in kritischer und konstruktiver Weise die Gestaltung und Folgen der digitalisierten Wissenschaftspraxis..(2022)