J. Kneifl, and J. Fehr. Software, (2023)Related to: Kneifl, J., Kutz, J. N., Brunton, S.L., Fehr, J.: Multi-Hierarchical Surrogate Learning of Structural Dynamical Systems Using Graph Convolutional Neural Networks. To be submitted (2023).
D. Väth, P. Tilli, and N. Vu. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, page 114--123. (2021)
V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner. Dataset, (2023)Related to: Viktor Zaverkin, David Holzmüller, Luca Bonfirraro, Johannes Kästner. Transfer learning for chemically accurate interatomic neural network potentials, Phys. Chem. Chem. Phys., 2023, 25, 5383-5396. doi: 10.1039/D2CP05793J.
T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.