A. Schlaich. Dataset, (2023)Related to: The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants. Bolik Stéphanie, Schlaich Alexander, Mukhina Tetiana, Amato Alberto, Bastien Olivier, Schneck Emanuel, Demé Bruno, Jouhet Juliette. bioRxiv 2023.01.24.525350. doi: 10.1101/2023.01.24.525350.
T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
I. Banerjee, and P. Walter. Dataset, (2022)Related to: Banerjee, I., Walter, P., Guthke, A., Mumford, K.G. & Nowak, W. (2022). The Method of Forced Probabilities: A Computation Trick for Bayesian Model Evidence. Computational Geosciences. Accepted for publication.
H. Hsueh. Dataset, (2021)Related to: Han-Fang Hsueh, Anneli Guthke, Thomas Wöhling, Wolfgang Nowak: Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. In: Water Resource Research (submitted). arXiv: 2107.09399.
M. Alkämper, and J. Magiera. Software, (2022)Related to: M. Alkämper, J. M. Magiera and C. Rohde, “An Interface Preserving Moving Mesh in Multiple Space Dimensions” (2021), submitted. arXiv: 2112.11956.
J. Pelzer. Software, (2024)Related to: Pelzer, Julia, and Miriam Schulte. "Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks." Geoenergy Science and Engineering (2024): 212788. doi: 10.1016/j.geoen.2024.212788.
I. Wochner, and S. Schmitt. Software, (2022)Related to: Wochner, I., Schumacher, P., Martius, G., Büchler, D., Schmitt, S., & Haeufle, D. F. (2022). Learning with Muscles: Benefits for Data-Efficiency and Robustness in Anthropomorphic Tasks. Conference on Robot Learning (CoRL) 2022. url: https://openreview.net/forum?id=Xo3eOibXCQ8.
M. Steffen. Dataset, (2023)Related to: Maier, S.: Simulation of a Novel Restraint Safety Concept for Motorcycles, Dissertation, University of Stuttgart, Shaker Verlag, Aachen, tbd.
S. Hermann. Dataset, (2022)Related to: Hermann, S., Fehr, J. Documenting research software in engineering science. Sci Rep 12, 6567 (2022). doi: 10.1038/s41598-022-10376-9.
J. Kneifl, and J. Fehr. Software, (2023)Related to: Kneifl, J., Kutz, J. N., Brunton, S.L., Fehr, J.: Multi-Hierarchical Surrogate Learning of Structural Dynamical Systems Using Graph Convolutional Neural Networks. To be submitted (2023).
I. Banerjee. Dataset, (2021)Related to: Banerjee, I., Guthke, A., Van de Ven, C. J. C., Mumford, K. G. & Nowak, W. (2021). Overcoming the Model-Data-Fit Problem in Porous Media: A Quantitative Method to Compare Invasion-Percolation Models to High-Resolution Data. Water Resources Research, 57, e2021WR029986. doi: 10.1029/2021WR029986.
R. Herkert. Software, (2024)Related to: R. Herkert, P. Buchfink, T. Wenzel, B. Haasdonk, P. Toktaliev, O. Iliev (2024), "Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data". arXiv: 2405.19170.
R. Herkert. Software, (2024)Related to: R. Herkert, P. Buchfink, B. Haasdonk, J. Rettberg, J. Fehr. (2024), "Error Analysis of Randomized Symplectic Model Order Reduction for Hamiltonian systems". arXiv: 2405.10465.
P. Reiser, J. Aguilar, A. Guthke, and P. Bürkner. Software, (2024)Related to: Reiser P., Aguilar J. E., Guthke A., & Bürkner P. C. (2023). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. ArXiv preprint 2312.05153. arXiv: 2312.05153.
F. Huber, P. Bürkner, D. Göddeke, and M. Schulte. Dataset, (2023)Related to: Huber, Felix; Bürkner, Paul-Christian; Göddeke, Dominik; Schulte, MiriamKnowledge-Based Modeling of Simulation Behavior for Bayesian OptimizationComputational Mechanics (submitted).
J. Magiera. Dataset, (2024)Related to: Jim Magiera, Deep Ray, Jan S. Hesthaven, Christian Rohde, Constraint-aware neural networks for Riemann problems, Journal of Computational Physics, Volume 409, 2020, 109345. doi: 10.1016/j.jcp.2020.109345.
M. Schmitt. Software, (2023)Related to: Schmitt, M., Radev, S. T., Bürkner, P.-C. (2023). Meta-Uncertainty in Bayesian Model Comparison. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:11-29, 2023.