Zusammenfassung

Trapping of single ultracold atoms is an important tool for applications ranging from quantum computation and communication to sensing. However, most experimental setups, while very precise and versatile, can only be operated in specialized laboratory environments due to their large size, complexity and high cost. Here, we introduce a new trapping concept for ultracold atoms in optical tweezers based on micrometer-scale lenses that are 3D printed onto the tip of standard optical fibers. The unique properties of these lenses make them suitable for both trapping individual atoms and capturing their fluorescence with high efficiency. In an exploratory experiment, we have established the vacuum compatibility and robustness of the structures, and successfully formed a magneto-optical trap for ultracold atoms in their immediate vicinity. This makes them promising components for portable atomic quantum devices.

Links und Ressourcen

Tags

Community

  • @pi5
  • @ffischer
@pi5s Tags hervorgehoben