T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.
J. Magiera. Dataset, (2024)Related to: Jim Magiera, Deep Ray, Jan S. Hesthaven, Christian Rohde, Constraint-aware neural networks for Riemann problems, Journal of Computational Physics, Volume 409, 2020, 109345. doi: 10.1016/j.jcp.2020.109345.
M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, and M. Niepert. Dataset, (2022)Related to: Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D. and Niepert, M.: PDEBench: An Extensive Benchmark for Scientific Machine Learning. submitted to the 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner. Dataset, (2023)Related to: Viktor Zaverkin, David Holzmüller, Luca Bonfirraro, Johannes Kästner. Transfer learning for chemically accurate interatomic neural network potentials, Phys. Chem. Chem. Phys., 2023, 25, 5383-5396. doi: 10.1039/D2CP05793J.
P. Reiser, J. Aguilar, A. Guthke, and P. Bürkner. Software, (2024)Related to: Reiser P., Aguilar J. E., Guthke A., & Bürkner P. C. (2023). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. ArXiv preprint 2312.05153. arXiv: 2312.05153.
M. Alvarez Chaves, H. Gupta, U. Ehret, and A. Guthke. Software, (2024)Related to: Álvarez Chaves, Manuel, Gupta, Hoshin V., Ehret, Uwe and Guthke, Anneli. On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data. Entropy 2024, 26(5), 387. doi: 10.3390/e26050387.
A. Schlaich. Dataset, (2023)Related to: The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants. Bolik Stéphanie, Schlaich Alexander, Mukhina Tetiana, Amato Alberto, Bastien Olivier, Schneck Emanuel, Demé Bruno, Jouhet Juliette. bioRxiv 2023.01.24.525350. doi: 10.1101/2023.01.24.525350.
S. Hermann. Dataset, (2022)Related to: Hermann, S., Fehr, J. Documenting research software in engineering science. Sci Rep 12, 6567 (2022). doi: 10.1038/s41598-022-10376-9.
M. Degen, J. Santos, K. Pluhackova, G. Cebrero, S. Ramos, G. Jankevicius, E. Hartenian, U. Guillerm, S. Mari, B. Kohl and 7 other author(s). Dataset, (2023)Related to: Degen, Morris; Santos, José Carlos; Pluhackova, Kristyna; Cebrero, Gonzalo; Ramos, Saray; Jankevicius, Gytis; Hartenian, Ella; Guillerm, Undina; Mari, Stefania A.; Kohl, Bastian; Müller, Daniel J.; Schanda, Paul; Maier, Timm; Perez, Camilo; Sieben, Christian; Broz, Petr; Hiller, Sebastian, "Structural basis for ninjurin-1 mediated plasma membrane rupture in lytic cell death", Nature 2023. doi: 10.1038/s41586-023-05991-z.
M. Rosenfelder, H. Ebel, and P. Eberhard. Dataset, (2023)Related to: Rosenfelder, M., Ebel, H., Eberhard, P. (2023). A Force-Based Formation Synthesis Approach for the Cooperative Transportation of Objects. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. doi: 10.1007/978-3-031-32606-6_37.
J. Pelzer. Software, (2024)Related to: Pelzer, Julia, and Miriam Schulte. "Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks." Geoenergy Science and Engineering (2024): 212788. doi: 10.1016/j.geoen.2024.212788.
P. Santana Chacon, M. Hammer, I. Wochner, J. Walter, and S. Schmitt. Software, (2023)Related to: P. F. S. Chacon, M. Hammer, I. Wochner, J. R. Walter and S. Schmitt. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. doi: 10.1080/10255842.2023.2293652.
R. Skukies. Software, (2023)Related to: Skukies, R., & Ehinger, B. V. (2023). The effect of estimation time window length on overlap correction in EEG data (2023.06.05.543689). bioRxiv. doi: 10.1101/2023.06.05.543689.
L. Nölle, P. Lerge, O. Martynenko, I. Wochner, F. Kempter, C. Kleinbach, S. Schmitt, and J. Fehr. Dataset, (2022)Related to: Kleinbach, C., Martynenko, O., Promies, J., Haeufle, D.F., Fehr, J., Schmitt, S., 2017. Implementation and validation of the extended hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models. Biomedical engineering online 16, 109. doi: 10.1186/s12938-017-0399-7.
R. Herkert. Software, (2023)Related to: R. Herkert, P. Buchfink, B. Haasdonk, J. Rettberg, J. Fehr: Randomized Symplectic Model Order Reduction for Hamiltonian Systemsm 2023. arXiv: 2303.04036.
J. Pelzer. Software, (2024)Related to: Pelzer, Julia, and Miriam Schulte. "Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks." Geoenergy Science and Engineering (2024): 212788. doi: 10.1016/j.geoen.2024.212788.
M. Alkämper, and J. Magiera. Software, (2022)Related to: M. Alkämper, J. M. Magiera and C. Rohde, “An Interface Preserving Moving Mesh in Multiple Space Dimensions” (2021), submitted. arXiv: 2112.11956.
M. Rosenfelder, H. Ebel, and P. Eberhard. Dataset, (2023)Related to: Rosenfelder, M., Ebel, H., Eberhard, P. (2023). Force-based organization and control scheme for the non-prehensile cooperative transportation of objects. Robotica, pp. 1-14, 2023. doi: 10.1017/S0263574723001704.
R. Herkert. Software, (2024)Related to: R. Herkert, P. Buchfink, T. Wenzel, B. Haasdonk, P. Toktaliev, O. Iliev (2024), "Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data". arXiv: 2405.19170.
F. Huber, P. Bürkner, D. Göddeke, and M. Schulte. Dataset, (2023)Related to: Huber, Felix; Bürkner, Paul-Christian; Göddeke, Dominik; Schulte, MiriamKnowledge-Based Modeling of Simulation Behavior for Bayesian OptimizationComputational Mechanics (submitted).
T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.
P. Stärk, and A. Schlaich. Software, (2024)Related to: Artemov, V.; Frank, L.; Doronin, R.; Stärk, P.; Schlaich, A.; Andreev, A.; Leisner, T.; Radenovic, A.; Kiselev, A. The Three-Phase Contact Potential Difference Modulates the Water Surface Charge. J. Phys. Chem. Lett. 2023, 14, 4796-4802. doi: 10.1021/acs.jpclett.3c00479.
I. Banerjee. Dataset, (2021)Related to: Banerjee, I., Guthke, A., Van de Ven, C. J. C., Mumford, K. G. & Nowak, W. (2021). Overcoming the Model-Data-Fit Problem in Porous Media: A Quantitative Method to Compare Invasion-Percolation Models to High-Resolution Data. Water Resources Research, 57, e2021WR029986. doi: 10.1029/2021WR029986.
T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. Butz, and W. Nowak. Dataset, (2022)Related to: Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M.V., Nowak, W.: Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network. Earth and Space Science Open Archive (2022). doi: 10.1002/essoar.10511934.1.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
M. Kelm, C. Bringedal, and B. Flemisch. Dataset, (2023)Related to: Kelm, M., Gärttner, S., Bringedal, C. et al. Comparison study of phase-field and level-set method for three-phase systems including two minerals. Comput Geosci 26, 545-570 (2022). doi: 10.1007/s10596-022-10142-w.
H. Hsueh. Dataset, (2021)Related to: Han-Fang Hsueh, Anneli Guthke, Thomas Wöhling, Wolfgang Nowak: Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. In: Water Resource Research (submitted). arXiv: 2107.09399.
D. Holzmüller. Software, (2021)Related to: David Holzmüller. On the Universality of the Double Descent Peak in Ridgeless Regression. International Conference on Learning Representations, 2021. arXiv: 2010.01851.
J. Pelzer. Dataset, (2023)Related to: Pelzer, Julia, and Miriam Schulte. "Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks." Geoenergy Science and Engineering (2024): 212788. doi: 10.1016/j.geoen.2024.212788.
J. Rettberg, D. Wittwar, and R. Herkert. Software, (2023)Related to: Rettberg, J.; Wittwar, D.; Buchfink, P.; Brauchler, A.; Ziegler, P.; Fehr, J.; Haasdonk, B.: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. Mathematical and Computer Modelling of Dynamical Systems, 2023, Vol. 29, No. 1, 116-148. doi: 10.1080/13873954.2023.2173238.
C. Homs Pons, and R. Lautenschlager. Software, (2024)Related to: Coupled Simulations and Parameter Inversion for Neural System and Electrophysiological Muscle Models, submitted to GAMM Mitteilungen.
J. Pelzer. Dataset, (2023)Related to: Pelzer, Julia, and Miriam Schulte. "Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks." Geoenergy Science and Engineering (2024): 212788. doi: 10.1016/j.geoen.2024.212788.
X. Xu. Dataset, (2023)Related to: Xu, Xiang, Xi Zhang, Andrei Ruban, Siegfried Schmauder, and Blazej Grabowski. "Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al." Acta Materialia 255 (2023): 118986. doi: 10.1016/j.actamat.2023.118986.
P. Rodegast, S. Maier, J. Kneifl, and J. Fehr. Software, (2023)Related to: Rodegast, P., Maier, S., Kneifl, J., Fehr, J.: On using Machine Learning Algorithms for Motorcycle Collision Detection, 2023. tbd.
J. Kneifl, and J. Fehr. Software, (2023)Related to: Kneifl, J., Kutz, J. N., Brunton, S.L., Fehr, J.: Multi-Hierarchical Surrogate Learning of Structural Dynamical Systems Using Graph Convolutional Neural Networks. To be submitted (2023).
M. Steffen. Dataset, (2023)Related to: Maier, S.: Simulation of a Novel Restraint Safety Concept for Motorcycles, Dissertation, University of Stuttgart, Shaker Verlag, Aachen, tbd.
A. Baier, and D. Frank. Software, (2023)Related to: Baier, Alexandra, Boukhers, Zeyd, & Staab, Steffen (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. ArXiv, abs/2103.06727. arXiv: abs/2103.06727.