T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.
V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner. Dataset, (2023)Related to: Viktor Zaverkin, David Holzmüller, Luca Bonfirraro, Johannes Kästner. Transfer learning for chemically accurate interatomic neural network potentials, Phys. Chem. Chem. Phys., 2023, 25, 5383-5396. doi: 10.1039/D2CP05793J.
T. Praditia. Dataset, (2020)Related to: Praditia, T., Walser, T., Oladyshkin, S. and Nowak, W.: Improving Thermochemical Energy Storage dynamics forecast with Physics-Inspired Neural Network architecture. Energies 2020.
T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. Butz, and W. Nowak. Dataset, (2022)Related to: Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M.V., Nowak, W.: Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network. Earth and Space Science Open Archive (2022). doi: 10.1002/essoar.10511934.1.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
M. Kelm, C. Bringedal, and B. Flemisch. Dataset, (2023)Related to: Kelm, M., Gärttner, S., Bringedal, C. et al. Comparison study of phase-field and level-set method for three-phase systems including two minerals. Comput Geosci 26, 545-570 (2022). doi: 10.1007/s10596-022-10142-w.
P. Rodegast, S. Maier, J. Kneifl, and J. Fehr. Software, (2023)Related to: Rodegast, P., Maier, S., Kneifl, J., Fehr, J.: On using Machine Learning Algorithms for Motorcycle Collision Detection, 2023. tbd.
J. Kneifl, and J. Fehr. Software, (2023)Related to: Kneifl, J., Kutz, J. N., Brunton, S.L., Fehr, J.: Multi-Hierarchical Surrogate Learning of Structural Dynamical Systems Using Graph Convolutional Neural Networks. To be submitted (2023).
M. Steffen. Dataset, (2023)Related to: Maier, S.: Simulation of a Novel Restraint Safety Concept for Motorcycles, Dissertation, University of Stuttgart, Shaker Verlag, Aachen, tbd.
F. Bechler. Dataset, (2024)Related to: Related Publication: Bechler, F.: Enabling Holistic Vehicle Safety - Combined Knowledge and Information through a Graph-based Approach, Dissertation, University of Stuttgart, Shaker Verlag, Aachen, tbd.
G. Tkachev. Software, (2021)Related to: G. Tkachev, S. Frey and T. Ertl, "S4: Self-Supervised learning of Spatiotemporal Similarity," in IEEE Transactions on Visualization and Computer Graphics. doi: 10.1109/TVCG.2021.3101418.
V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner. Software, (2021)Related to: V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments,” J. Chem. Theory Comput. 17, 6658–6670 (2021). doi: 10.1021/acs.jctc.1c00527.
S. Schulz, C. Bringedal, and S. Ackermann. Dataset, (2021)Related to: SimTech Project work "Herleitung reduzierter Modelle einer Zweiphasenströmung zwischen parallelen Platten mit Slip-Bedingungen".
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
D. Holzmüller. Software, (2022)Related to: David Holzmüller and Dirk Pflüger. Fast Sparse Grid Operations using the Unidirectional Principle: A Generalized and Unified Framework. Sparse Grids and Applications - Munich 2018 (2021). doi: 10.1007/978-3-030-81362-8_4.
J. Kneifl, and J. Fehr. Software, (2020)Related to: Jonas Kneifl, Dennis Grunert, and Joerg Fehr (2021). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. In: International Journal for Numerical Methods in Engineering, 122:4774-4786. doi: 10.1002/nme.6712.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2023)Related to: David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2023. arXiv: 2203.09410.