Autor der Publikation

PDEBench Datasets : Data for "PDEBench: An Extensive Benchmark for Scientific Machine Learning"

, , , , , , und . Dataset, (2022)Related to: Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D. and Niepert, M.: PDEBench: An Extensive Benchmark for Scientific Machine Learning. submitted to the 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks. arXiv: 2210.07182.
DOI: 10.18419/darus-2986

Bitte wählen Sie eine Person um die Publikation zuzuordnen

Um zwischen Personen mit demselben Namen zu unterscheiden, wird der akademische Grad und der Titel einer wichtigen Publikation angezeigt. Zudem lassen sich über den Button neben dem Namen einige der Person bereits zugeordnete Publikationen anzeigen.

 

Weitere Publikationen von Autoren mit dem selben Namen

PDEBENCH : an extensive benchmark for scientific machine learning, , , , , , und . NIPS '22 : Proceedings of the 36th International Conference on Neural Information Processing Systems, Seite 1596-1611. Red Hook, Curran Associates Inc, (2022)PDEBench: An Extensive Benchmark for Scientific Machine Learning, , , , , , und . 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, (2022)Surrogate-data-enriched Physics-Aware Neural Networks, , , und . Proceedings of the Northern Lights Deep Learning Workshop 2022, 3, Seite 1-8. Septentrio Academic Publishing, (2022)How to Avoid Trivial Solutions in Physics-Informed Neural Networks, und . preprint, (2021)PDEBench Pretrained Models : Pretrained models for "PDEBench: An Extensive Benchmark for Scientific Machine Learning", , , , , , und . Dataset, (2022)Related to: Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D. and Niepert, M.: PDEBench: An Extensive Benchmark for Scientific Machine Learning. submitted to the 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.A Deep Learning Approach for Thermal Plume Prediction of Groundwater Heat Pumps, , , und . Preprint, (2022)PDEBench Datasets, , , , , , und . (2022)Deep Learning-Based Surrogate Modelling of Thermal Plumes for Shallow Subsurface Temperature Approximation, , , und . AI for Earth Sciences ICLR Workshop 2022, (April 2022)Learning Free-Surface Flow with Physics-Informed Neural Networks, , und . 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Seite 1668-1673. Piscataway, IEEE, (2021)Deep learning based surrogate modeling for thermal plume prediction of groundwater heat pumps, , , und . Preprint, (2023)