Abstract
Rack-and-pinion drives are commonly used in large machine tools to provide linear motion of heavy loads over long travel distances. A key concern in this context is the achievable path accuracy, which is limited by assembly and manufacturing tolerances of the gearing components in conjunction with load-dependent deformation and the inherent backlash of the system. To address this issue, this paper presents a method for robust modeling of the individual and state-dependent transmission errors of a drive utilizing a two-stage machine learning approach. Based on this, the position control is extended to include an error compensation, which suppresses the modeled deviations in the mechanical system including the position-dependent backlash. The achievable increase in path accuracy as well as the robustness of the approach are evaluated and quantified by an experimental validation on a system with industry standard components.
Users
Please
log in to take part in the discussion (add own reviews or comments).