@petraheim

Tailored Lace : Moldless Fabrication of 3D Bio-Composite Structures through an Integrative Design and Fabrication Process

, , , , and . Applied Sciences, 11 (22): 10989 (2021)
DOI: 10.3390/app112210989

Abstract

This research demonstrates an integrative computational design and fabrication workflow for the production of surface-active fibre composites, which uses natural fibres, revitalises a traditional craft, and avoids the use of costly molds. Fibre-reinforced polymers (FRPs) are highly tunable building materials, which gain efficiency from fabrication techniques enabling controlled fibre direction and placement in tune with load-bearing requirements. These techniques have evolved closely with industrial textile processes. However, increased focus on automation within FRP fabrication processes have overlooked potential key benefits presented by some lesser-known traditional techniques of fibre arrangement. This research explores the process of traditional bobbin lace-making and applies it in a computer-aided design and fabrication process of a small-scale structural demonstrator in the form of a chair. The research exposes qualities that can expand the design space of FRPs, as well as speculates about the potential automation of the process. In addition, Natural Fibre-Reinforced Polymers (NFRP) are investigated as a sustainable and human-friendly alternative to more popular carbon and glass FRPs.

Links and resources

Tags

community