Energy-efficient and Error-resilient Iterative Solvers for Approximate Computing

, , und . Proceedings of the 23rd IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS'17), Seite 237--239. (2017)


Iterative solvers like the Preconditioned Conjugate Gradient (PCG) method are widely-used in compute-intensive domains including science and engineering that often impose tight accuracy demands on computational results. At the same time, the error resilience of such solvers may change in the course of the iterations, which requires careful adaption of the induced approximation errors to reduce the energy demand while avoiding unacceptable results. A novel adaptive method is presented that enables iterative Preconditioned Conjugate Gradient (PCG) solvers on Approximate Computing hardware with high energy efficiency while still providing correct results. The method controls the underlying precision at runtime using a highly efficient fault tolerance technique that monitors the induced error and the quality of intermediate computational results.

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation