%0 Conference Paper
%1 10767666
%A Reichmann, Luca
%A Hägele, David
%A Weiskopf, Daniel
%B 2024 IEEE 14th Symposium on Large Data Analysis and Visualization (LDAV)
%D 2024
%K visualization;Principal management;Data libraries;Data analysis;Dimensionality analysis;High performance reduction;Runtime;Software algorithms;Memory component computing;Software Measurement;Dimensionality reduction;out-of-core;out-of-sample;evaluation
%P 43-53
%R 10.1109/LDAV64567.2024.00008
%T Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions
@inproceedings{10767666,
added-at = {2025-01-14T13:12:56.000+0100},
author = {Reichmann, Luca and Hägele, David and Weiskopf, Daniel},
biburl = {https://puma.ub.uni-stuttgart.de/bibtex/29c9eb741374853e3a11c6dc7c697bd8a/haegeldd},
booktitle = {2024 IEEE 14th Symposium on Large Data Analysis and Visualization (LDAV)},
doi = {10.1109/LDAV64567.2024.00008},
interhash = {16d151ef59945b90f62af611c911ddd8},
intrahash = {9c9eb741374853e3a11c6dc7c697bd8a},
keywords = {visualization;Principal management;Data libraries;Data analysis;Dimensionality analysis;High performance reduction;Runtime;Software algorithms;Memory component computing;Software Measurement;Dimensionality reduction;out-of-core;out-of-sample;evaluation},
pages = {43-53},
timestamp = {2025-01-14T13:12:56.000+0100},
title = {Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions},
year = 2024
}