D. Väth, P. Tilli, and N. Vu. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, page 114--123. (2021)
B. Haasdonk, T. Wenzel, G. Santin, and S. Schmitt. Numerical Mathematics and Advanced Applications ENUMATH 2019, page 499--508. Cham, Springer International Publishing, (2021)
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2022)Related to: David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. arXiv: 2203.09410.
D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. Software, (2023)Related to: David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2023. arXiv: 2203.09410.
S. Schulz, C. Bringedal, and S. Ackermann. Dataset, (2021)Related to: SimTech Project work "Herleitung reduzierter Modelle einer Zweiphasenströmung zwischen parallelen Platten mit Slip-Bedingungen".
V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner. Software, (2021)Related to: V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments,” J. Chem. Theory Comput. 17, 6658–6670 (2021). doi: 10.1021/acs.jctc.1c00527.
J. Kneifl, and J. Fehr. Software, (2023)Related to: Kneifl, J., Kutz, J. N., Brunton, S.L., Fehr, J.: Multi-Hierarchical Surrogate Learning of Structural Dynamical Systems Using Graph Convolutional Neural Networks. To be submitted (2023).
J. Kneifl, and J. Fehr. Software, (2020)Related to: Jonas Kneifl, Dennis Grunert, and Joerg Fehr (2021). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. In: International Journal for Numerical Methods in Engineering, 122:4774-4786. doi: 10.1002/nme.6712.