Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Journal Article
%1 zaverkin2020gaussian
%A Zaverkin, Viktor
%A Kästner, Johannes
%D 2020
%I American Chemical Society
%J Journal of Chemical Theory and Computation
%K
%N 8
%P 5410-5421
%R 10.1021/acs.jctc.0c00347
%T Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
%V 16
@article{zaverkin2020gaussian,
added-at = {2023-08-31T16:22:54.000+0200},
affiliation = {Kastner, J (Corresponding Author), Univ Stuttgart, Inst Theoret Chem, D-70569 Stuttgart, Germany.
Zaverkin, V; Kastner, J., Univ Stuttgart, Inst Theoret Chem, D-70569 Stuttgart, Germany.},
author = {Zaverkin, Viktor and Kästner, Johannes},
biburl = {https://puma.ub.uni-stuttgart.de/bibtex/22e4501cddb0c728672ca0aaa8efa0a9d/puma-wartung},
doi = {10.1021/acs.jctc.0c00347},
interhash = {89c0c895c5d976af269a91f5b342073c},
intrahash = {2e4501cddb0c728672ca0aaa8efa0a9d},
issn = {{1549-9618} and {1549-9626}},
journal = {Journal of Chemical Theory and Computation},
keywords = {},
language = {eng},
number = 8,
orcid-numbers = {Kastner, Johannes/0000-0001-6178-7669
Zaverkin, Viktor/0000-0001-9940-8548},
pages = {5410-5421},
publisher = {American Chemical Society},
research-areas = {Chemistry; Physics},
timestamp = {2023-08-31T14:22:54.000+0200},
title = {Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials},
unique-id = {ISI:000562139200054},
volume = 16,
year = 2020
}