@ihtpublikation

Composition and magnetic properties of thin films grown by interdiffusion of Mn and Sn-Rich, Ge lattice matched SixGe1-x-ySny layers

, , , , , , , and . Journal of Magnetism and Magnetic Materials, (2022)
DOI: https://doi.org/10.1016/j.jmmm.2021.168731

Abstract

We report on the structure and magnetic properties of Mn based ferromagnetic layers on the semiconductor SixGe1-x-ySny with Sn content up to y = 0.15 in comparison with layers on Ge and Si0.75Ge0.25. The ferromagnetic layers grow by interdiffusion between an evaporated Mn layer and molecular-beam-epitaxy grown semiconductor layers. This approach enables the preparation of Mn based layers, e.g., as a ferromagnetic contact material for SixGe1-x-ySny using a self-aligned interdiffusion process, opening up the opportunity for large-scale manufacturing. The samples show a clear phase separation into Si-rich and Ge-rich Mn compounds. All samples are ferromagnetic and exhibit a decrease in saturation magnetization and an increase in coercive field with increasing Si content x. The Curie temperature shows no decisive trend with increasing Si content with values around room temperature. Based on the composition, structure and magnetic properties, we propose a two-layer model to correlate the structure and composition with the observed magnetic properties. We show that the changes in magnetic behavior can be explained solely by considering the Si content of the SixGe1-x-ySny substrates with the Sn being largely passive.

Description

Composition and magnetic properties of thin films grown by interdiffusion of Mn and Sn-Rich, Ge lattice matched SixGe1-x-ySny layers - ScienceDirect

Links and resources

Tags

community

  • @unibiblio
  • @ihtpublikation
@ihtpublikation's tags highlighted