@ihtpublikation

Transient Phenomena in Sub-Bandgap Impact Ionization in Si n-i-p-i-n Diode

, , und . IEEE Transactions on Electron Devices 65 (8): 3414-3420 (August 2018)

Zusammenfassung

Sub-bandgap (SBG) impact ionization (II) enables steep subthreshold slope that enable devices to overcome the thermal limit of 60 mV/decade. This phenomenon at low voltage enables various applications in logic, memory, and neuromorphic engineering. Recently, we have demonstrated sub-0.2-V II in n-i-p-i-n diode experimentally primarily based on steady-state analysis. In this paper, we present the detailed experimental transient behavior of SBG-II in n-i-p-i-n. The SBG-II generated holes are stored in the p-well. First, we extract the leakage mechanism from the p-well to show two mechanisms: 1) recombination–generation and 2) over the barrier (OTB), where OTB dominates when barrier height<inline-formula><tex-math notation="LaTeX">$_b&lt;0.59~eV$</tex-math></inline-formula>. Second, we analytically extract the SBG-II current (<inline-formula><tex-math notation="LaTeX">$I_II$</tex-math></inline-formula>) at 300 K from the experimental results. The drain current (<inline-formula><tex-math notation="LaTeX">$I_D$</tex-math></inline-formula>), electric field (<inline-formula><tex-math notation="LaTeX">$E-field$</tex-math></inline-formula>), and<inline-formula><tex-math notation="LaTeX">$I_II$</tex-math></inline-formula>are plotted in time. We observe that<inline-formula><tex-math notation="LaTeX">$I_II$</tex-math></inline-formula>increase as<inline-formula><tex-math notation="LaTeX">$E-field$</tex-math></inline-formula>reduces which indicates that<inline-formula><tex-math notation="LaTeX">$E$</tex-math></inline-formula>-field does not primarily contribute to<inline-formula><tex-math notation="LaTeX">$I_II$</tex-math></inline-formula>. Furthermore,<inline-formula><tex-math notation="LaTeX">$I_D$</tex-math></inline-formula>shows two distinct behaviors: 1)<inline-formula><tex-math notation="LaTeX">$I_II (I_D$</tex-math></inline-formula>) is constant at the beginning and 2) eventually “universal”<inline-formula><tex-math notation="LaTeX">$I_II (I_D$</tex-math></inline-formula>) is linear, i.e.,<inline-formula><tex-math notation="LaTeX">$I_II=kI_D$</tex-math></inline-formula>where<inline-formula><tex-math notation="LaTeX">$k = 10^-3$</tex-math></inline-formula>; we also show that the electrons primarily contributing to<inline-formula><tex-math notation="LaTeX">$I_D$</tex-math></inline-formula>are directly incapable of II due to insufficient energy (<inline-formula><tex-math notation="LaTeX">$&lt; E_g$</tex-math></inline-formula>). Fischetti’s model showed that SBG-II is primarily caused by “hot” electrons that accept energy in an Auger-like process from “cold” drain electrons to enable SBG-II. We speculate that if<inline-formula><tex-math notation="LaTeX">$I_D$</tex-math></inline-formula>electrons “heat-up” the cold drain electrons, which would further energize the hot electrons to produce the observed<inline-formula><tex-math notation="LaTeX">$I_II(I_D$</tex-math></inline-formula>) universal dependence.

Links und Ressourcen

DOI:
10.1109/TED.2018.2846360
URL:
BibTeX-Schlüssel:
8401800
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation