Publications

Linda Bondorf, Manfred Beutel, Markus Thiemann, Martin Dressel, Daniel Bothner, Jörg Sichelschmidt, Kristin Kliemt, Cornelius Krellner, und Marc Scheffler. Angle-dependent electron spin resonance of YbRh2Si2 measured with planar microwave resonators and in-situ rotation. Physica B: Condensed Matter, Elsevier BV, Oktober 2017. [PUMA: YbRh2Si2 resonance spin] URL

Nabeel Aslam, Matthias Pfender, Rainer Stöhr, Philipp Neumann, Marc Scheffler, Hitoshi Sumiya, Hiroshi Abe, Shinobu Onoda, Takeshi Ohshima, Junichi Isoya, und Jörg Wrachtrup. Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Review of Scientific Instruments, (86)6:064704, American Institute of Physics, Juni 2015. [PUMA: detected magnetic optically resonance] URL

Yvonne Wiemann, Julian Simmendinger, Conrad Clauss, Lapo Bogani, Daniel Bothner, Dieter Koelle, Reinhold Kleiner, Martin Dressel, und Marc Scheffler. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides. Appl. Phys. Lett., (106)19:193505, American Institute of Physics, Mai 2015. [PUMA: electron resonance spin] URL

Conrad Clauss, Daniel Bothner, Dieter Koelle, Reinhold Kleiner, Lapo Bogani, Marc Scheffler, und Martin Dressel. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides. Applied Physics Letters, (102):162601, April 2013. [PUMA: resonance spin waveguides]

F. El Hallak, J. van Slageren, und M. Dressel. Torque detected broad band electron spin resonance. Rev. Sci. Instrum., (81)9:095105, September 2010. [PUMA: band broad resonance spin]

C. Schlegel, M. Dressel, und J. van Slageren. Broadband electron spin resonance at 4–40 GHz and magnetic fields up to 10 T. Rev. Sci. Instrum., (81)9:093901, September 2010. [PUMA: broadband electron resonance spin]

G. Yu, Y. Li, E. M. Motoyama, X. Zhao, N. Barišić, Y. Cho, P. Bourges, K. Hradil, R. A. Mole, und M. Greven. Magnetic resonance in the model high-temperature superconductor HgBa2CuO4+δ. Phys. Rev. B, (81)6:064518, American Physical Society, Februar 2010. [PUMA: magnetic resonance superconductor] URL

N. Kirchner, J. van Slageren, und M. Dressel. Simulation of frequency domain magnetic resonance spectra of molecular magnets. Inorganica Chimica Acta, (360)13:3813-3819, Elsevier BV, Oktober 2007. [PUMA: domain frequency magnetic resonance] URL

J. van Slageren, S. Vongtragool, B. Gorshunov, A.A. Mukhin, und Martin Dressel. Frequency-domain magnetic resonance spectroscopy. Journal of Magnetism and Magnetic Materials 272-276: E765, (272-276):E765-E767, Elsevier BV, Mai 2004. [PUMA: magnetic resonance] URL

H. and Schroth, K. Lassmann, C. Borgmann, und H. Bracht. Electric-Dipole Spin Resonance of Be-Doped Silicon. Materials Science Forum 258: 417-422, (258):417-422, 1997. [PUMA: electric-dipole resonance spin]

Linda Bondorf, Manfred Beutel, Markus Thiemann, Martin Dressel, Daniel Bothner, Jörg Sichelschmidt, Kristin Kliemt, Cornelius Krellner, und Marc Scheffler. Angle-dependent electron spin resonance of YbRh2Si2 measured with planar microwave resonators and in-situ rotation. Physica B: Condensed Matter, (536):331-334, Elsevier BV, Mai 2018. [PUMA: YbRh2Si2 electron resonance spin] URL