Publications

I. Dan, G. Ducournau, S. Hisatake, P. Szriftgiser, R. Braun, and I. Kallfass. A Terahertz Wireless Communication Link Using a Superheterodyne Approach. IEEE Transactions on Terahertz Science and Technology, (10)1:32-43, January 2020. [PUMA: (THz) 10.2 100 300.0 GHz;bit Gbit/s;InGaAs;Complex Gbit/s;bit MIMIC;gallium amplitude analogue-digital applications;wireless arbitrary arsenide;HEMT binary channels;terahertz circuits;IEEE circuits;InGaAs circuits;modems;quadrature circuits;multichannel communication communication;high communications;wireless components;monolithic compounds;millimetre configuration;receiver;fast conversion;binary converters;frequency converters;multichannel data data;transmission distances;complex effect electron frequency;baseband generator;carrier generators;wireless high integrated link;low link;pseudorandom link;terahertz links;radio metamorphic millimeter mobility modulated modulation;millimeter modulation;radio monolithic point-to-point range;all-electronic rate rates;64-QAM;THz receivers;terahertz semiconductors;indium sequences;analog-to-digital sequences;field sequences;superheterodyne signal;digital signals;16-QAM;32-QAM;baseband standard;wireless standards;III-V technology;IEEE terahertz transistor transmission;channel transmission;radio transmissions;modems;superheterodyne transmitters;random wave waveform waves;waveform wireless]

U. Lewark, A. Tessmann, H. Massler, A. Leuther, and I. Kallfass. Active frequency multiplier-by-nine \MMIC\ for millimeter-wave signal generation. in Proc. German Microwave Conference (GeMIC), Darmstadt, 1--4, 2011. [PUMA: 100 87 99 Fraunhofer GHz GHz;millimeter-wave HEMT IAF MMIC;buffer amplifier;frequency convertors;phase electron frequency generation;phase-noise generators; measurements;size metamorphic mobility multiplier-by-nine multipliers;high nm;MMIC;amplifiers;frequency noise;signal signal technology;X-band;active to transistors;millimetre wave]

I. Kallfass, P. Pahl, H. Massler, A. Leuther, A. Tessmann, S. Koch, and T. Zwick. A 200 GHz Monolithic Integrated Power Amplifier in Metamorphic HEMT Technology. Microwave and Wireless Components Letters, IEEE, (19)6:410--412, June 2009. [PUMA: 100 186 212 GHz GHz, HEMT amplifier, amplifiers amplifierscommunication electron frequency high high-resolution imaging integrated metamorphic millimeter-wave millimetre mobility monolithic nm,MMIC power radar, size systems, technology, to transistor transistors, wave]

S. Koch, M. Guthoerl, I. Kallfass, A. Leuther, and S. Saito. A 120-145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications. Solid-State Circuits, IEEE Journal of, (45)10:1961--1967, 2010. [PUMA: 100 120 145 31 35 37 GHz GHz;frequency GHz;grounded HEMT circuit;mm circuits;MIMIC;coplanar controlled coplanar detection;millimetre electron imaging;power imaging;radio integrated mW;voltage mm mobility monolithic nm;HEMT oscillator;wavelength oscillators; receiver;high receivers;chipset receivers;voltage-controlled technology;MIMIC;VCO;atmospheric to transistor;millimeter utilization;frequency wave waveguide;heterodyne waveguides;heterodyne windows;broadband]

B. Aja, K. Schuster, F. Schafer, J.D. Gallego, S. Chartier, M. Seelmann-Eggebert, I. Kallfass, A. Leuther, H. Massler, M. Schlechtweg, C. Diez, I. Lopez-Fernandez, S. Lenz, and S. Turk. Cryogenic Low-Noise mHEMT-Based MMIC Amplifiers for 4 - 12 GHz Band. Microwave and Wireless Components Letters, IEEE, (21)11:613--615, 2011. [PUMA: 100 11.6 12 22 26 4 41 8.1 GHz GHz;gain InAlAs-InGaAs;MMIC K;III-V K;temperature MMIC amplifiers; amplifiers;aluminium amplifiers;coplanar amplifiers;cryogenic arsenide;high chips;amplifier circuit;power circuits;broadband compounds;cryogenic compounds;low dB;gain dB;metamorphic electron electronics;gallium high integrated low-noise mHEMT-based mW;power mW;size microwave mobility nm;temperature noise semiconductors;MMIC technology;cryogenic temperature;frequency to transistor;monolithic transistors;indium very]