@simtech

Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler

, , , , and . Atomization and Sprays, 31 (9): 95-116 (2021)
DOI: 10.1615/AtomizSpr.2021037223

Abstract

Medical inhalers have been used for the treatment of a wide range of respiratory diseases including COVID-19. In this study, we investigate the annular liquid jet breakup with a coaxial supersonic gas jet using large eddy simulations. This contributes to a further understanding and improvement of medical inhaler designs. The liquid is sucked in by the low pressure as a result of the high velocity gas jet and breaks up due to the interaction with the gas jet. This type of spray nozzle configuration is commonly used in medical inhalers. Two different gas nozzle diameters are studied. The simulated liquid structure is compared with preliminary, qualitative experimental results. The gas jet pressure and radial velocity of the liquid are found to be coupled and the interaction between them plays an important role in formation of the liquid structure. The effect of gas nozzle diameter on flow rate, mean radius of the liquid, and mean radial velocity, as well as its oscillation behavior has been investigated. The power development of dominate frequencies of averaged radial liquid velocity along the flow direction is shown. The growth of the instabilities can be observed from these results.

Links and resources

Tags

community