Abstract

Fusion proteins combining hexavalent TRAIL with antibody fragments allow for a targeted delivery and efficient apoptosis induction in tumor cells. Here, we analyzed scFv-Fc-scTRAIL molecules directed against EGFR, HER2, HER3, and EpCAM as well as an untargeted Fc-scTRAIL fusion protein for their potentials to induce cell death bothin vitroand in a xenograft tumor modelin vivo. The scFv-Fc-scTRAIL fusion protein directed against EGFR as well as the fusion protein directed against EpCAM showed targeting effects on the two tested colorectal carcinoma cell lines Colo205 and HCT116, while a fusion protein targeting HER3 was more effective than untargeted Fc-scTRAIL only on Colo205 cells. Interestingly, another anti-HER3 scFv-Fc-scTRAIL fusion protein exhibiting approximately 10-fold weaker antigen binding as well as the HER2-directed molecule were unable to increase cytotoxicity compared to Fc-scTRAIL. A comparison of EC50values of cell death induction and antigen binding supports the assumption that high affinity antigen binding is one of the requirements forin vitrotargeting effects. Furthermore, a minimal number of expressed target antigens might be required for increased cytotoxicity of targeted compared to non-targeted molecules. In a Colo205 s.c. xenograft tumor model, strongest antitumor activity was observed for the anti-HER3 scFv-Fc-scTRAIL fusion protein based on antibody 3-43, with complete tumor remissions after six twice-weekly injections. Surprisingly, a similarin vivoactivity was also observed for untargeted Fc-scTRAIL in this tumor model, indicating that additional factors contribute to the potent efficacy of targeted as well as untargeted hexavalent Fc-scTRAIL fusion proteinsin vivo.

Links and resources

Tags

community

  • @cristiano
  • @fabian
@fabian's tags highlighted