@utilityimsb

Linking continuous and discrete intervertebral disc models through homogenisation

, , , and . Biomechanics and Modeling in Mechanobiology, 12 (3): 453--466 (Jun 1, 2013)
DOI: 10.1007/s10237-012-0416-5

Abstract

At present, there are two main numerical approaches that are frequently used to simulate the mechanical behaviour of the human spine. Researchers with a continuum-mechanical background often utilise the finite-element method (FEM), where the involved biological soft and hard tissues are modelled on a macroscopic (continuum) level. In contrast, groups associated with the science of human movement usually apply discrete multi-body systems (MBS). Herein, the bones are modelled as rigid bodies, which are connected by Hill-type muscles and non-linear rheological spring-dashpot models to represent tendons and cartilaginous connective tissue like intervertebral discs (IVD). A possibility to benefit from both numerical methods is to couple them and use each approach, where it is most appropriate. Herein, the basic idea is to utilise MBS in simulations of the overall body and apply the FEM only to selected regions of interest. In turn, the FEM is used as homogenisation tool, which delivers more accurate non-linear relationships describing the behaviour of the IVD in the multi-body dynamics model. The goal of this contribution is to present an approach to couple both numerical methods without the necessity to apply a gluing algorithm in the context of a co-simulation. Instead, several pre-computations of the intervertebral disc are performed offline to generate an approximation of the homogenised finite-element (FE) result. In particular, the discrete degrees of freedom (DOF) of the MBS, that is, three displacements and three rotations, are applied to the FE model of the IVD, and the resulting homogenised forces and moments are recorded. Moreover, a polynomial function is presented with the discrete DOF of the MBS as variables and the discrete forces an moments as function values. For the sake of a simple verification, the coupling method is applied to a simplified motion segment of the spine. Herein, two stiff cylindrical vertebrae with an interjacent homogeneous cylindrical IVD are examined under the restriction of purely elastic deformations in the sagittal plane.

Links and resources

Tags

community

  • @or71o
  • @utilityimsb
  • @synschmitt
@utilityimsb's tags highlighted