Abstract

In this work, we present a novel hybrid Discontinuous Galerkin scheme with hp-adaptivity capabilities for the compressible Euler equations. In smooth regions, an efficient and accurate discretization is achieved via local p-adaptation. At strong discontinuities and shocks, a finite volume scheme on an h-refined element-local subgrid gives robustness. Thus, we obtain a hp-adaptive scheme that exploits both the high convergence rate and efficiency of a p-adaptive high order scheme as well as the stable and accurate shock capturing abilities of a low order finite volume scheme, but avoids the inherent resolution loss through h-refinement. A single a priori indicator, based on the modal decay of the local polynomial solution representation, is used to distinguish between discontinuous and smooth regions and control the p-refinement. Our method is implemented as an extension to the open source software FLEXI. Hence, the efficient implementation of the method for high performance computers was an important criterion during the development. The efficiency of our adaptive scheme is demonstrated for a variety of test cases, where results are compared against non adaptive simulations. Our findings suggest that the proposed adaptive method produces comparable or even better results with significantly less computational costs.

Links and resources

Tags

community

  • @unibiblio
  • @simtech
  • @jenskeim
  • @simtechpuma
@jenskeim's tags highlighted