%0 Journal Article
%1 zav20
%A Zaverkin, V.
%A Kästner, J.
%D 2020
%J Journal of Chemical Theory and Computation
%K EXC2075 PN3 PN3-4 PN6 PN6A-1 selected
%P 5410-5421
%R 10.1021/acs.jctc.0c00347
%T Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
%U http://dx.doi.org/10.1021/acs.jctc.0c00347
%V 16
@article{zav20,
added-at = {2024-03-26T11:56:32.000+0100},
author = {Zaverkin, V. and K\"astner, J.},
biburl = {https://puma.ub.uni-stuttgart.de/bibtex/258ec9e653315a43276d606fd7f50dcbb/exc2075},
doi = {10.1021/acs.jctc.0c00347},
interhash = {a90a7763f9eaeac3225954baa22183c7},
intrahash = {58ec9e653315a43276d606fd7f50dcbb},
journal = {Journal of Chemical Theory and Computation},
keywords = {EXC2075 PN3 PN3-4 PN6 PN6A-1 selected},
pages = {5410-5421},
timestamp = {2024-03-27T15:18:19.000+0100},
title = {Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials},
url = {http://dx.doi.org/10.1021/acs.jctc.0c00347},
volume = 16,
year = 2020
}