@lorisburth

Microstructure analysis of monodisperse ferrofluid monolayers: theory and simulation

, , and . Phys. Chem. Chem. Phys., 10 (14): 1883-1895 (2008)
DOI: 10.1039/B719460A

Abstract

We try to elucidate the microstructure formation in a monodisperse ferrofluid monolayer. The system under study consists of soft sphere magnetic dipolar particles confined to a thin fluid layer. The positions of the particles are constrained to a 2D geometry, whereas the particle magnetic dipole moments are not fixed to the body systems, and are free to rotate in 3 dimensions, hence forming in what we call a quasi-2D geometry. Using a combination of analytical density functional theory and molecular dynamics (MD) simulations, we find that for the studied range of parameters the majority of aggregates might be divided into two types: chains and rings. Their sizes and area fractions are strongly influenced by the geometrical constraints. We show that for quasi-2D systems the excluded area effects play one of the most important parts in the microstructure formation. The simulation technique and the theoretical model put forward in the present paper agree qualitatively with the results of recent in situ observations of the microstructures observed in ferrofluid monolayers M. Klokkenberg, R. P. A. Dullens, W. K. Regel, B. H. Erné, A. P. Philipse, Phys. Rev. Lett., 2006, 96, 037203.

Links and resources

Tags

community

  • @icp_bib
  • @lorisburth
@lorisburth's tags highlighted