Abstract
This article is based on the planar beam theories presented in Eugster and Harsch (2020) and deals with the finite element analysis of their presented beam models. A Bubnov-Galerkin method, where B-splines are chosen for both ansatz and test functions, is applied for discretizing the variational formulation of the beam theories. Five different planar beam finite element formulations are presented: The Timoshenko beam, the Euler--Bernoulli beam obtained by enforcing the cross-section's orthogonality constraint as well as the inextensible Euler--Bernoulli beam by additionally blocking the beam's extension. Furthermore, the Euler--Bernoulli beam is formulated with a minimal set of kinematical descriptors together with a constrained version that satisfies inextensibility. Whenever possible, the numerical results of the different formulations are compared with analytical and semi-analytical solutions. Additionally, numerical results reported in classical beam finite element literature are collected and reproduced.
Users
Please
log in to take part in the discussion (add own reviews or comments).