Publications

R. Herkert, P. Buchfink, B. Haasdonk, J. Rettberg, and J. Fehr. Randomized Symplectic Model Order Reduction for Hamiltonian Systems. In Ivan Lirkov, and Svetozar Margenov (Eds.), Large-Scale Scientific Computations, 99--107, Springer Nature Switzerland, Cham, 2024. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) misc]

Robin Herkert, Patrick Buchfink, Bernard Haasdonk, Johannes Rettberg, and Jörg Fehr. Error Analysis of Randomized Symplectic Model Order Reduction for Hamiltonian systems. 2024. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) misc] URL

Patrick Buchfink, and Bernard Haasdonk. Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In Fred J. Vermolen, and Cornelis Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019, (139)Springer International Publishing, 2021. [PUMA: EXC2075 PN5 PN5-7 misc] URL

Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems. IFAC-PapersOnLine, (55)20:463--468, 2022. [PUMA: EXC2075 PN5 PN5-7 selected]

Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Robin Herkert, Jörg Fehr, and Bernard Haasdonk. Improved a posteriori Error Bounds for Reduced port-Hamiltonian Systems. 2023. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) misc]

Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Christoph Fehr, and Bernard Haasdonk. Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar. Mathematical and Computer Modelling of Dynamical Systems, (29)1:116-148, Taylor & Francis Group, 2023. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) selected]

Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds and Approximation with Weakly Symplectic Autoencoder. SIAM Journal on Scientific Computing, (45)2:A289--A311, Society for Industrial & Applied Mathematics (SIAM), March 2023. [PUMA: EXC2075 PN5 PN5-7 selected] URL

Harsh Sharma, Hongliang Mu, Patrick Buchfink, Rudy Geelen, Silke Glas, and Boris Kramer. Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds. Computer Methods in Applied Mechanics and Engineering, (417):116402, Elsevier BV, December 2023. [PUMA: EXC2075 PN5 PN5-7 selected] URL

Shahnewaz Shuva, Patrick Buchfink, Oliver Röhrle, and Bernard Haasdonk. Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In Ivan Lirkov, and Svetozar Margenov (Eds.), Large-Scale Scientific Computing, 402--409, Springer International Publishing, 2022. [PUMA: EXC2075 PN5 PN5-7 selected]

Patrick Buchfink, Silke Glas, Bernard Haasdonk, and Benjamin Unger. Model reduction on manifolds: A differential geometric framework. arXiv e-prints, 2023. [PUMA: EXC2075 PN4 PN4-8 PN5 PN5-7] URL

P. Buchfink, B. Haasdonk, and S. Rave. PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, and D. Ševčovič (Eds.), Proceedings of the Conference Algoritmy 2020, 151--160, Vydavateľstvo SPEKTRUM, August 2020. [PUMA: EXC2075 PN5 PN5-7 selected] URL

Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Christoph Fehr, and Bernard Haasdonk. Replication Data for: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. 2023. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6-1(II) PN7 unclearPN6]

Raphael Leiteritz, Patrick Buchfink, Bernard Haasdonk, and Dirk Pflüger. Surrogate-data-enriched Physics-Aware Neural Networks. Proceedings of the Northern Lights Deep Learning Workshop 2022, (3)March 2022. [PUMA: EXC2075 PN5 PN5-7 PN6 PN6-2 selected]

Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Christoph Fehr, and Bernard Hassdonk. Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. 1-27, Cornell University, 2022. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) unclear]

Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. arXiv e-prints, 2023. [PUMA: EXC2075 PN5 PN5-7 misc] URL

Robin Rainer Herkert, Patrick Buchfink, Bernard Haasdonk, Johannes Rettberg, and Jörg Christoph Fehr. Randomized Symplectic Model Order Reduction for Hamiltonian Systems. 1-8, Cornell University, 2023. [PUMA: EXC2075 PN3 PN3A-8 PN5 PN5-7 PN6 PN6-1(II) misc]