Fernando A. Escobedo, und Juan J. de Pablo. Extended continuum configurational bias Monte Carlo methods for simulation of flexible molecules. The Journal of Chemical Physics, (102)6:2636-2652, AIP, 1995. [PUMA: BONDS; CARLO CHAINS; CHEMICAL CONFIGURATION; ELONGATION; FLEXIBILITY; FLUIDS; HARDSPHERE METHOD; MODEL MOLECULES; MONTE POLYMERS; SIMULATION;]

Fernando A. Escobedo, und Juan J. de Pablo. Monte Carlo simulation of the chemical potential of polymers in an expanded ensemble. The Journal of Chemical Physics, (103)7:2703-2710, AIP, 1995. [PUMA: CARLO CHAINS; CHEMICAL ENSEMBLE; MACROMOLECULES; METHOD; MONTE POLYMERS; POTENTIAL; SIMULATION; TRANSFORMATIONS]

Alexandre Diehl, und Yan Levin. Colloidal charge reversal: Dependence on the ionic size and the electrolyte concentration. Journal of Chemical Physics, (129)12:124506, AIP, 2008. [PUMA: Carlo Monte colloids; electrolytes; electrophoresis; methods]

Joost de Graaf, Niels Boon, Marjolein Dijkstra, und Rene van Roij. Electrostatic interactions between Janus particles. Journal of Chemical Physics, (137)10:104910--12, AIP, September 2012. [PUMA: Boltzmann Carlo Monte Poisson colloids, electrostatics, equation equation, methods,]

Juan J. Cerdà, Tomás Sintes, und Raúl Toral. Spherical brushes within spherical cavities: A self-consistent field and Monte Carlo study. Journal of Chemical Physics, (131)13:134901, AIP, 2009. [PUMA: Carlo Monte methods; polymer solutions]

Manfred Bohn, und Dieter W. Heermann. Topological interactions between ring polymers: Implications for chromatin loops. Journal of Chemical Physics, (132)4:044904, AIP, 2010. [PUMA: Carlo Monte biophysics; cellular configurations; forces; intramolecular methods; molecular polymers]

Dezso Boda, W. Ronald Fawcett, Douglas Henderson, und Stefan Sokolowski. Monte Carlo, density functional theory, and Poisson--Boltzmann theory study of the structure of an electrolyte near an electrode. Journal of Chemical Physics, (116)16:7170--7176, AIP, April 2002. [PUMA: Carlo Monte density electrochemistry, electrodes, electrolytes, functional liquid methods, structure, theory theory,]

M. J. Blair, und G. N. Patey. Gas-liquid coexistence and demixing in systems wth highly directional pair potentials. Physical Review E, (57)5:5682--5686, 1998. [PUMA: Carlo Gibbs Monte ensemble]

C.K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. Plasma Science, IEEE Transactions on, (19)2:65-85, April 1991. [PUMA: Carlo Monte Poisson and applications;Plasma atoms;partially calculations;Monte charge-particle charged collision collisions;electromagnetic direct equation field fusion gases;particle-in-cell ionized materials measurements;Computational measurements;Plasma meshes;Atomic methods;Nuclear methods;plasma modeling;Computer models;Coulomb plasma plasmas;magnetized plasmas;many-particle processes;plasma processing;Plasma processing;spatial sciences;Plasma sheet simulation;1D simulation;Monte simulation;Plasma simulations;neutral simulations;plasma-assisted solutions;fast solvers;low-temperature temperature]

Zuzana Benková, und Peter Cifra. Stiffening Transition in Semiflexible Cyclic Macromolecules. Macromol Theor Simul, (20)1:65--74, 2011. [PUMA: carlo chain cyclic macromolecules, monte shape simulations, stiffness, transition, worm-like]

E. M. Aydt, und R. Hentschke. Swelling of a model network: A Gibbs-ensemble molecular dynamics study. The Journal of Chemical Physics, (112)12:5480-5487, AIP, 2000. [PUMA: Carlo Monte digital dynamics effects; method; methods molecular simulation; solvent swelling;]

Masayuki Aoshima, und Akira Satoh. Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field. Journal of Colloid and Interface Science, (280)1:83--90, 2004. [PUMA: Carlo Monte simulation]

Erik C. Allen, und Gregory C. Rutledge. Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains. Journal of Chemical Physics, (130)3:034904--10, AIP, Januar 2009. [PUMA: Carlo Monte chemical liquid methods mixing, mixtures, potential, theory,]

Rosalind J. Allen, Daan Frenkel, und Pieter Rein ten Wolde. Simulating rare events in equilibrium or nonequilibrium stochastic systems. Journal of Chemical Physics, (124)2:024102, AIP, 2006. [PUMA: Carlo Monte constants; kinetics methods polymers; rate reaction stochastic systems; theory;]