Publications

R. L. Frank, A. Laptev, und T. Weidl. An improved one-dimensional Hardy inequality. J. Math. Sci. (N.Y.), (268)3, Problems in mathematical analysis. No. 118:323--342, 2022. [PUMA: Hardy iadm improved inequality one-dimensional weidl] URL

Hynek Kovar\'ık, und Timo Weidl. Improved Berezin-Li-Yau inequalities with magnetic field. In Cambridge Univ. Press (Hrsg.), Proc. Roy. Soc. Edinburgh Sect. A, (145)1:145-160, 2015. [PUMA: Berezin Kovarik Weidl field inequalities magnetic with] URL

Rupert L. Frank, Ari Laptev, und Timo Weidl. An improved one-dimensional Hardy inequality. 19, https://arxiv.org/abs/2204.00877, 2022. [PUMA: iadm weidl] URL

Rupert Frank, Ari Laptev, und Timo Weidl. Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities. 512, Cambridge University Press, 2022. [PUMA: iadm weidl]

Rafael D. Benguria, Andrea Cianchi, Vladimir G. Maz'ya, E. Brian Davies, Leon A. Takhtajan, Christiane Tretter, Dmitri Yafaev, und und weitere. Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume.. In Pavel Exner, Rupert L. Frank, Fritz Gesztesy, Helge Holden, und Timo Weidl (Hrsg.), EMS Series of Congress Reports, EMS Press, Berlin, Juni 2021. [PUMA: iadm weidl] URL

Rupert L. Frank, Michael Loss, und Timo Weidl. Pólya's conjecture in the presence of a constant magnetic field. J. Eur. Math. Soc. (JEMS), (11)6:1365--1383, 2009. [PUMA: Weidl] URL

Hynek Kovar\'ık, Semjon Vugalter, und Timo Weidl. Two-dimensional Berezin-Li-Yau inequalities with a correction term. Comm. Math. Phys., (287)3:959--981, 2009. [PUMA: Weidl] URL

Timo Weidl. Improved Berezin-Li-Yau inequalities with a remainder term. Spectral theory of differential operators, (225):253--263, Amer. Math. Soc., Providence, RI, 2008. [PUMA: Berezin-Li-Yau Weidl inequalities remainder term] URL

Rupert L. Frank, Barry Simon, und Timo Weidl. Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states. Comm. Math. Phys., (282)1:199--208, 2008. [PUMA: Weidl] URL

Timo Weidl. Nonstandard Cwikel type estimates. Interpolation theory and applications, (445):337--357, Amer. Math. Soc., Providence, RI, 2007. [PUMA: Cwikel IADM Nonstandard Weidl estimates type] URL

Hynek Kovar\'ık, Semjon Vugalter, und Timo Weidl. Spectral estimates for two-dimensional Schrödinger operators with application to quantum layers. Comm. Math. Phys., (275)3:827--838, 2007. [PUMA: IADM Spectral Weidl estimates] URL

C. Förster, und T. Weidl. Trapped modes for an elastic strip with perturbation of the material properties. Quart. J. Mech. Appl. Math., (59)3:399--418, 2006. [PUMA: IADM Weidl elastic] URL

Pavel Exner, Helmut Linde, und Timo Weidl. Lieb-Thirring inequalities for geometrically induced bound states. Lett. Math. Phys., (70)1:83--95, 2004. [PUMA: Weidl bound geometrically induced states] URL

Semjon Vugalter, und Timo Weidl. On the discrete spectrum of a pseudo-relativistic two-body pair operator. Ann. Henri Poincaré, (4)2:301--341, 2003. [PUMA: Weidl discrete iadm pseudo-relativistic spectrum] URL

Ari Laptev, Oleg Safronov, und Timo Weidl. Bound state asymptotics for elliptic operators with strongly degenerated symbols. Nonlinear problems in mathematical physics and related topics, I, (1):233--246, Kluwer/Plenum, New York, 2002. [PUMA: Weidl asymptotics elliptic operators] URL

Pavel Exner, und Timo Weidl. Lieb-Thirring inequalities on trapped modes in quantum wires. XIIIth International Congress on Mathematical Physics (London, 2000), 437--443, Int. Press, Boston, MA, 2001. [PUMA: IADM Weidl quantum wires]

Ari Laptev, und Timo Weidl. Recent results on Lieb-Thirring inequalities. Journées ``Équations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000), Exp. No. XX, 14, Univ. Nantes, Nantes, 2000. [PUMA: IADM Lieb-Thirring Weidl inequalities]

D. Hundertmark, A. Laptev, und T. Weidl. New bounds on the Lieb-Thirring constants. Invent. Math., (140)3:693--704, 2000. [PUMA: Lieb-Thirring Weidl bounds constants] URL

Ari Laptev, und Timo Weidl. Sharp Lieb-Thirring inequalities in high dimensions. Acta Math., (184)1:87--111, 2000. [PUMA: IADM Lieb-Thirring Sharp Weidl dimensions high inequalities] URL

Timo Weidl. A remark on Hardy type inequalities for critical Schrödinger operators with magnetic fields. The Mazya anniversary collection, Vol. 2 (Rostock, 1998), (110):345--352, Birkhäuser, Basel, 1999. [PUMA: Hardy IADM Weidl inequalities type]