Publications

F. D. Gaspoz, P. Morin, und A. Veeser. A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, (33)4:1018--1042, 2017. [PUMA: posteriori vorlaeufig from:mhartmann spaces finite error a Sobolev Dirac estimators, methods, mass, adaptivity, element fractional] URL

D. Wirtz, und B. Haasdonk. Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Systems and Control Letters, (61)1:203 - 211, 2012. [PUMA: projection a-posteriori vorlaeufig model from:mhartmann reduction, error kernel decomposition, dynamical systems, offline/online methods, subspace nonlinear estimates,] URL

F. D. Gaspoz, C. Kreuzer, K. Siebert, und D. Ziegler. A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution. Submitted, 2017. [PUMA: posteriori vorlaeufig from:mhartmann finite error a heat convergence, equation estimators, methods, adaptivity, element] URL

I. Martini, G. Rozza, und B. Haasdonk. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, (41)5:1131--1157, 2015. [PUMA: medium equation; basis 76S05; vorlaeufig from:mhartmann method; 76D07 problem; Stokes 65N55; estimation; Error decomposition; Non-coercive flow; Reduced Domain Porous] URL

J. Manuel Cascón, Ricardo H. Nochetto, und Kunibert G. Siebert. Design and Convergence of AFEM in $H(div)$. Mathematical Models & Methods in Applied Sciences, (17)11:1849--1881, 2007. [PUMA: oscillation; reduction; posteriori multigrid vorlaeufig convergence; from:mhartmann preconditioning A error estimate;] URL

Daniel Wirtz, und Bernard Haasdonk. A-posteriori error estimation for parameterized kernel-based systems. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012. [PUMA: parameterized projection a-posteriori vorlaeufig model from:mhartmann reduction, error kernel decomposition, dynamical systems, offline/online methods, subspace nonlinear estimates,] URL

Fernando D. Gaspoz, und Pedro Morin. Convergence rates for adaptive finite elements. IMA J. Numer. Anal., (29)4:917--936, Oxford University Press, 2009. [PUMA: posteriori vorlaeufig elliptic from:mhartmann refinement, mesh estimator, error adaptive a equations]

F. D. Gaspoz, P. Morin, und A. Veeser. A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, (33)4:1018--1042, 2017. [PUMA: Dirac Sobolev a adaptivity, element error estimators, finite fractional mass, methods, posteriori spaces vorlaeufig] URL

D. Wirtz, und B. Haasdonk. Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Systems and Control Letters, (61)1:203 - 211, 2012. [PUMA: a-posteriori decomposition, dynamical error estimates, kernel methods, model nonlinear offline/online projection reduction, subspace systems, vorlaeufig] URL

F. D. Gaspoz, C. Kreuzer, K. Siebert, und D. Ziegler. A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution. Submitted, 2017. [PUMA: a adaptivity, convergence, element equation error estimators, finite heat methods, posteriori vorlaeufig] URL

I. Martini, G. Rozza, und B. Haasdonk. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, (41)5:1131--1157, 2015. [PUMA: 65N55; 76D07 76S05; Domain Error Non-coercive Porous Reduced Stokes basis decomposition; equation; estimation; flow; medium method; problem; vorlaeufig] URL

J. Manuel Cascón, Ricardo H. Nochetto, und Kunibert G. Siebert. Design and Convergence of AFEM in $H(div)$. Mathematical Models & Methods in Applied Sciences, (17)11:1849--1881, 2007. [PUMA: A convergence; error estimate; multigrid oscillation; posteriori preconditioning reduction; vorlaeufig] URL

Daniel Wirtz, und Bernard Haasdonk. A-posteriori error estimation for parameterized kernel-based systems. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012. [PUMA: a-posteriori decomposition, dynamical error estimates, kernel methods, model nonlinear offline/online parameterized projection reduction, subspace systems, vorlaeufig] URL

Fernando D. Gaspoz, und Pedro Morin. Convergence rates for adaptive finite elements. IMA J. Numer. Anal., (29)4:917--936, Oxford University Press, 2009. [PUMA: a adaptive elliptic equations error estimator, mesh posteriori refinement, vorlaeufig]

Claus Braun. Algorithm-based fault tolerance for matrix operations on graphics processing units: analysis and extension to autonomous operation.. 2015. [PUMA: ABFT GPGPU GPU SimTech algebra algorithm-based error error-detection fault fault-tolerance linear matrix-operations myown simulation]

Claus Braun, Sebastian Halder, und Hans-Joachim Wunderlich. A-ABFT: Autonomous Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics Processing Units. Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'14), 443--454, 2014. [PUMA: ABFT GPGPU GPU SimTech adaptivity algebra algorithm-based autonompous error error-correction error-detection fault-tolerance linear matrix matrix-multiplication metric myown rounding rounding-error]

Alexander Schöll, Claus Braun, Michael A. Kochte, und Hans-Joachim Wunderlich. Low-Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient Solver. Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT'15), 60-65, 2015. [PUMA: ABFT CG PCG SimTech conjugate error error-correction error-detection fault fault-tolerance gradient linear myown preconditioned solver sparse system]

Harry A. Stern, und Keith G. Calkins. On mesh-based Ewald methods: Optimal parameters for two differentiation schemes. Journal of Chemical Physics, (128)21:214106, AIP, 2008. [PUMA: Green's dynamics error function liquid mean method; methods; molecular permittivity; square theory; water]

Jiri Kolafa, und John W. Perram. Cutoff errors in the Ewald summation formulae for point charge systems. Molecular Simulation, (9)5:351--368, 1992. [PUMA: Ewald error formula sum,] URL

M. Holst, N. Baker, und F. Wang. Adaptive multilevel finite element solution of the Poisson--Boltzmann equation I. Algorithms and examples. Journal of Computational Chemistry, (21)15:1319--1342, John Wiley & Sons, Inc., 2000. [PUMA: Poisson--Boltzmann a adaptive biomolecules, electrostatics element equation, error estimation, finite methods, posteriori]