Publications

Natalie Lewandowski. Sociolinguistic factors in language proficiency: phonetic convergence as a signature of pronunciation talent. In Grzegorz Dogil, and Susanne Maria Reiterer (Eds.), 257-278, Mouton De Gruyter, 2009. [PUMA: convergence myown phonetic] URL

Natalie Lewandowski, and Antje Schweitzer. Prosodic and segmental convergence in spontaneous German conversations. The Journal of the Acoustical Society of America, (128)4:2458--2458, Acoustical Society of America, October 2010. [PUMA: convergence myown speech] URL

Natalie Lewandowski, and Grzegorz Dogil. Perception‐production loop in native–non‐native dialogs: Phonetic convergence. The Journal of the Acoustical Society of America, (125)4:2768--2768, Acoustical Society of America, April 2009. [PUMA: convergence myown phonetic speech] URL

Natalie Lewandowski, and Daniel Duran. Individual Differences in Implicit Attention to Phonetic Detail in Speech Perception. Proc. Interspeech 2019, 2255-2259, Interspeech 2019, 2019. [PUMA: attention convergence myown phonetic speech] URL

Natalie Lewandowski. Talent in nonnative phonetic convergence. Universität Stuttgart, 2012. [PUMA: convergence phonetic] URL

Antje Schweitzer, and Natalie Lewandowski. Convergence of articulation rate in spontaneous speech.. In Frédéric Bimbot, Christophe Cerisara, Cécile Fougeron, Guillaume Gravier, Lori Lamel, François Pellegrino, and Pascal Perrier (Eds.), INTERSPEECH, 525-529, ISCA, 2013. [PUMA: convergence speech] URL

Kunibert G. Siebert. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, (31)3:947-970, 2011. [PUMA: adaptivity convergence density elements finite ians vorlaeufig] URL

Pedro Morin, Kunibert G. Siebert, and Andreas Veeser. Convergence of Finite Elements Adapted for Weaker Norms. In V. Cutello, G. Fotia, and L. Puccio (Eds.), Applied and Industrial Matematics in Italy - II, (75):468-479, World Sci. Publ., Hackensack, NJ, 2007. [PUMA: Adaptivity; conforming convergence elements; finite from:mhartmann ians vorlaeufig] URL

Kunibert G. Siebert. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, (31)3:947-970, 2011. [PUMA: adaptivity convergence density elements finite from:mhartmann ians vorlaeufig] URL

Christian Kreuzer, Christian Möller, Alfred Schmidt, and Kunibert G. Siebert. Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation. IMA Journal of Numerical Analysis, 2012. [PUMA: adaptive analysis convergence elements, finite from:mhartmann ians parabolic problems, vorlaeufig] URL

Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert. Convergence of Adaptive Finite Element Methods. SIAM Review, (44)4:631-658, 2002. [PUMA: Adaptive Convergence Convexity; FEM; Hencky Linear algorithm; elasticity; elastoplasticity; from:mhartmann ians vorlaeufig] URL

Pedro Morin, Kunibert G. Siebert, and Andreas Veeser. Convergence of Finite Elements Adapted for Weaker Norms. In V. Cutello, G. Fotia, and L. Puccio (Eds.), Applied and Industrial Matematics in Italy - II, (75):468-479, World Sci. Publ., Hackensack, NJ, 2007. [PUMA: Adaptivity; conforming convergence elements; finite vorlaeufig] URL

Kunibert G. Siebert. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, (31)3:947-970, 2011. [PUMA: adaptivity convergence density elements finite vorlaeufig] URL

Christian Kreuzer, Christian Möller, Alfred Schmidt, and Kunibert G. Siebert. Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation. IMA Journal of Numerical Analysis, 2012. [PUMA: adaptive analysis convergence elements, finite parabolic problems, vorlaeufig] URL

Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert. Convergence of Adaptive Finite Element Methods. SIAM Review, (44)4:631-658, 2002. [PUMA: Adaptive Convergence Convexity; FEM; Hencky Linear algorithm; elasticity; elastoplasticity; vorlaeufig] URL

Qiang Du, Maria Emelianenko, and Lili Ju. Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations. 2006. [PUMA: convergence lloyd voronoi]