Convergence rates for adaptive finite elements. IMA J. Numer. Anal., (29)4:917--936, Oxford University Press, 2009. [PUMA: a estimator, equations posteriori adaptive error refinement, vorlaeufig elliptic mesh]
A-posteriori error estimation for parameterized kernel-based systems. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012. [PUMA: subspace error dynamical kernel a-posteriori methods, systems, nonlinear offline/online decomposition, parameterized projection estimates, model vorlaeufig reduction,] URL
Design and Convergence of AFEM in $H(div)$. Mathematical Models & Methods in Applied Sciences, (17)11:1849--1881, 2007. [PUMA: A convergence; posteriori reduction; error estimate; multigrid oscillation; preconditioning vorlaeufig] URL
Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, (41)5:1131--1157, 2015. [PUMA: Error decomposition; medium 76D07 Porous Reduced method; basis problem; Stokes estimation; 76S05; equation; Non-coercive Domain flow; vorlaeufig 65N55;] URL
A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution. Submitted, 2017. [PUMA: a equation estimators, convergence, error finite methods, posteriori adaptivity, element vorlaeufig heat] URL
A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, (33)4:1018--1042, 2017. [PUMA: a Dirac estimators, error finite fractional methods, posteriori adaptivity, element spaces mass, Sobolev vorlaeufig] URL
Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Systems and Control Letters, (61)1:203 - 211, 2012. [PUMA: subspace error dynamical kernel a-posteriori methods, systems, nonlinear offline/online decomposition, projection estimates, model vorlaeufig reduction,] URL