Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems
, und .
61 (1): 203-211 (2012)

In this paper, we consider the topic of model reduction for nonlinear dynamical systems based on kernel expansions. Our approach allows for a full offline/online decomposition and efficient online computation of the reduced model. In particular, we derive an a-posteriori state-space error estimator for the reduction error. A key ingredient is a local Lipschitz constant estimation that enables rigorous a-posteriori error estimation. The computation of the error estimator is realized by solving an auxiliary differential equation during online simulations. Estimation iterations can be performed that allow a balancing between estimation sharpness and computation time. Numerical experiments demonstrate the estimation improvement over different estimator versions and the rigor and effectiveness of the error bounds.
  • @mhartmann
  • @unibiblio-2
  • @dblp
  • @mathematik
Diese Publikation wurde noch nicht bewertet.

Bewertungsverteilung
Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.