Article,

Metabolic Architecture of the Cereal Grain and its Relevance to Maximize Carbon Use Efficiency

, , , , , , , , , and .
Plant Physiology, 169 (3): 1698-1713 (2015)
DOI: 10.1104/pp.15.00981

Abstract

Here, we have characterized the spatial heterogeneity of the cereal grain’s metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield

Tags

Users

  • @leonkokkoliadis
  • @tinabarthelmes

Comments and Reviews