Article,

An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation

, , , and .
(2021)
DOI: 10.1007/978-3-030-75549-2_12

Abstract

Approaches based on order-adaptive regularisation belong to the most accurate variational methods for computing the optical flow. By locally deciding between first- and second-order regularisation, they are applicable to scenes with both fronto-parallel and ego-motion. So far, however, existing order-adaptive methods have a decisive drawback. While the involved first- and second-order smoothness terms already make use of anisotropic concepts, the underlying selection process itself is still isotropic in that sense that it locally chooses the same regularisation order for all directions. In our paper, we address this shortcoming. We propose a generalised order-adaptive approach that allows to select the local regularisation order for each direction individually. To this end, we split the order-adaptive regularisation across and along the locally dominant direction and perform an energy competition for each direction separately. This in turn offers another advantage. Since the parameters can be chosen differently for both directions, the approach allows for a better adaption to the underlying scene. Experiments for MPI Sintel and KITTI 2015 demonstrate the usefulness of our approach. They not only show improvements compared to an isotropic selection scheme. They also make explicit that our approach is able to improve the results from state-of-the-art learning-based approaches, if applied as a final refinement step – thereby achieving top results in both benchmarks.

Tags

Users

  • @sfbtrr161
  • @cbeschle
  • @christinawarren
  • @brittalenz
  • @visus
  • @mathematik

Comments and Reviews