Numerical modelling of seismic slope failure using MPM
, , , , und .

The Finite Element Method (FEM) is widely used in the simulation of geotechnical applications. Owing to the limitations of FEM to model problems involving large deformations, many efforts have been made to develop methods free of mesh entanglement. One of these methods is the Material Point Method (MPM) which models the material as Lagrangian particles capable of moving through a background computational mesh in Eulerian manner. Although MPM represents the continuum by material points, solution is performed on the computational mesh. Thus, imposing boundary conditions is not aligned with the material representation. In this paper, a non-zero kinematic condition is introduced where an additional set of particles is incorporated to track the moving boundary. This approach is then applied to simulate the seismic motion resulting in failure of slopes. To validate this simulation procedure, two geotechnical applications are modelled using MPM. The first is to reproduce a shaking table experiment where the results of another numerical method are available. After validating the present numerical scheme for relatively large deformation problem, it is applied to simulate progression of a large-scale landslide during the Chi-Chi earthquake of Taiwan in which excessive material deformation and transportation is taking place. (C) 2016 Elsevier Ltd. All rights reserved.
  • @unibiblio
  • @hermann
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.