Article,

Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 1

, , , , , , , , , and .
Environmental Earth Sciences, 70 (8): 3839-3853 (2013)
DOI: 10.1007/s12665-013-2803-3

Abstract

Hydraulic fracturing of unconventional gas reservoirs rapidly developed especially in the USA to an industrial scale during the last decade. Potential adverse effects such as the deterioration of the quality of exploitable groundwater resources, areal footprints, or even the climate impact were not assessed. Because hydraulic fracturing has already been practised for a long time also in conventional reservoirs, the expansion into the unconventional domain was considered to be just a minor but not a technological step, with potential environmental risks. Thus, safety and environmental protection regulations were not critically developed or refined. Consequently, virtually no baseline conditions were documented before on-site applications as proof of evidence for the net effect of environmental impacts. Not only growing concerns in the general public, but also in the administrations in Germany promoted the commissioning of several expert opinions, evaluating safety, potential risks, and footprints of the technology in focus. The first two publications of the workgroup ``Risks in the Geological System'' of the independent ``Information and Dialogue process on hydraulic fracturing'' (commissioned by ExxonMobil Production Deutschland GmbH) comprises the strategy and approaches to identify and assess the potential risks of groundwater contamination of the exploitable groundwater system in the context of hydraulic fracturing operations in the Münsterland cretaceous basin and the Lower Saxony Basin, Germany. While being specific with respect to local geology and the estimation of effective hydraulic parameters, generalized concepts for the contamination risk assessment were developed. The work focuses on barrier effectiveness of different units of the overburden with respect to the migration of fracking fluids and methane, and considers fault zones as potential fluid pathway structures.

Tags

Users

  • @berndflemisch

Comments and Reviews