Bridging the Divide: A New Methodology for Semi-Automatic Programming of Heterogeneous Parallel Machines
, , , , , , und .
(Januar 2016)

This paper presents a new programming methodology for intro- ducing and tuning parallelism for heterogeneous shared-memory systems (comprising a mixture of CPUs and GPUs), using a com- bination of algorithmic skeletons (such as farms and pipelines), Monte-Carlo tree search for deriving mappings of tasks to avail- able hardware resources, and refactoring tool support for applying the patterns and mappings in an easy and effective way. Using our approach, we demonstrate easily obtainable, significant and scal- able speedups on a number of case studies showing speedups of up to 41 over the sequential code on a 24-core machine with one GPU. We also demonstrate that the mappings the MCTS algorithm suggest are comparable to the best possible speedups that can be obtained.
  • @kamranidrees
  • @amerwafai
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.