A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations
, , и .

Intrusive Uncertainty Quantification methods such as stochastic Galerkin are gaining popularity, whereas the classical stochastic Galerkin approach is not ensured to preserve hyperbolicity of the underlying hyperbolic system. We present a modification of this method that uses a slope limiter to retain admissible solutions of the system, while providing high-order approximations in the physical and stochastic space. This is done using spatial discontinuous Galerkin and a Multi-Element stochastic Galerkin ansatz in the random space. We analyze the convergence of the resulting scheme and apply it to the compressible Euler equations with different uncertain initial states. The numerical results underline the strength of our method if discontinuities are present in the uncertainty of the solution.
искать в
  • @britsteiner
  • @mhartmann
  • @unibiblio-2
  • @fabianmeyer
  • @mathematik
К этой публикации ещё не было создано рецензий.

распределение оценок
средняя оценка пользователей0,0 из 5.0 на основе 0 рецензий
    Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)