Inbook,

Illumination-aware Large Displacement Optical Flow

, , , and .
10746, page 139-154. Springer International Publishing, (2017)
DOI: 10.1007/978-3-319-78199-0_10

Abstract

The integration of feature matches for handling large displacements is one of the key concepts of recent variational optical flow methods. In this context, many existing approaches rely on confidence measures to identify locations where a poor initial match can potentially be improved by adaptively integrating flow proposals. One very intuitive confidence measure to identify such locations is the matching cost of the data term. Problems arise, however, in the presence of illumination changes, since brightness constancy does not hold and invariant constancy assumptions typically discard too much information for an identification of poor matches. In this paper, we suggest a pipeline approach that addresses the aforementioned problem in two ways. First, we propose a novel confidence measure based on the illumination-compensated brightness constancy assumption. By estimating illumination changes from a pre-computed flow this measure allows us to reliably identify poor matches even in the presence of varying illumination. Secondly, in contrast to many existing pipeline approaches, we propose to integrate only feature matches that have been obtained from dense variational methods. This in turn not only provides robust matches due to the inherent regularization, it also demonstrates that in many cases sparse descriptor matches are not needed for large displacement optical flow. Experiments on the Sintel benchmark and on common large displacement sequences demonstrate the benefits of our strategy. They show a clear improvement over the baseline method and a comparable performance as similar methods from the literature based on sparse feature matches.

Tags

Users

  • @hlawatml
  • @sfbtrr161
  • @mueller
  • @leonkokkoliadis
  • @dblp
  • @visus

Comments and Reviews