Article,

Adding a second spectral channel to the SOFIA FPI+ science instrument

, , , and .
Proc. SPIE, (2018)
DOI: 10.1117/12.2313663

Abstract

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft, accommodating a 2.7 meter infrared telescope. This airborne observation platform operates at flight altitudes of up to 13.7 km (45,000 ft) and therefore allows a nearly unobstructed view of the visible and infrared universe at wavelengths between 0.3 µm and 1600 µm. The Focal Plane Imager (FPI+) is SOFIA’s main tracking camera. It uses a commercial, off-the-shelf camera with a thermoelectrically cooled EM-CCD. The back-illuminated sensor has a peak quantum efficiency greater than 95% at 550 nm and the dark current is as low as 0.01 e-/pix/sec. Since 2015, the FPI+ has been available to the community as a Facility Science Instrument, and can be used to observe stellar occultations by solar system objects such as dwarf planets, moons, asteroids, and comets, and transits of extra-solar planets. To date, SOFIA has conducted multi-channel observations of occultations, e.g. the occultation by Pluto in June of 2015 or the occultation by Triton in October 2017, using three instruments, HIPO and FLITECAM at the main instrument flange of the telescope, and the FPI+. This multi-wavelength sampling is important for enabling discrimination of particle sizes and constituents of hazes in the atmosphere of bodies such as Pluto and Triton, and the coma material of comets. Multi-wavelength observations also serve to allow us to place constraints on the chemical compositions of these formations. After the retirement of the two other instruments, the FPI+ is now SOFIA’s only remaining observing tool for occultations. In order to preserve some of the multi-color observing capability of the platform, we here discuss the addition of a second spectral channel to the FPI+. In a first upgrade step, a beamsplitter will split the incoming light and send it to two EMCCD cameras, one working in the ”blue”, e.g. SLOAN g’ band, and the other working in the ”red”, e.g. SLOAN i’ or z’ band. In a second upgrade step, the ”red” channel could be equipped with a NIR camera in order to provide a wider wavelength separation of the two bands. This will however require a modified dichroic coating on the tertiary (Nasmyth) mirror of the SOFIA telescope. This paper presents a preliminary design study of the opto-mechanical configuration of the dual channel FPI+.

Tags

Users

  • @asteroidguy

Comments and Reviews