@lorenzschmitt

Cramér-Rao Lower Bound for State-Constrained Nonlinear Filtering

, und . IEEE Signal Processing Letters (Dezember 2017)

Zusammenfassung

This work presents a mean-square error lower bound for state estimation of nonlinear stochastic systems under given differentiable state constraints. Its recursive formulation permits incorporation of random process and measurement errors and is shown to be a generalization of the known lower bound for unconstrained problems. The bound is evaluated for the example of locating a ground vehicle from noisy measurements of its horizontal position and velocity incorporating a roadmap.

Links und Ressourcen

DOI:
10.1109/LSP.2017.2764540
BibTeX-Schlüssel:
schmitt17constrainedCrlb
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation