Towards multiphysics simulation of deep penetration laser welding using smoothed particle hydrodynamics

, , , und . VII European Congress on Computational Methods in Applied Sciences and Engineering - Eccomas Proceedia, 2405, Seite 8196-8206. (Januar 2016)


Multiphysics simulations of deep penetration laser welding are performed with the meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) method. Compared to mesh-based methods, SPH has advantages in handling phase transitions, free-surface melt flow, and fluid-structure interaction. Based on previous work on simulating conduction mode laser welding using SPH, the numerical model is extended to include further physical effects such as evaporation and exertion of recoil pressure on the melt due to evaporation. Particular emphasis is placed on modeling the energy input through the laser beam. A co-simulation approach is developed by coupling an SPH code with a ray tracer that tracks the propagation of the laser beam in the keyhole in order to achieve spatial distributions of energy transferred to the melt layer. A surface detection and reconstruction algorithm is implemented to exchange current surface data. Simulation results of spot welding and seam welding are shown using this co-simulation approach. The developed model serves as a basis to investigate the influence and sensitivity of process parameters on the weld and to better understand transient effects around the keyhole leading to weld imperfections.

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation