@cristiano

m6A RNA Degradation Products are Catabolized by an Evolutionarily Conserved N6-methyl-AMP Deaminase in Plant and Mammalian Cells.

, , , , , and . The Plant cell, (June 2018)
DOI: 10.1105/tpc.18.00236

Abstract

N6-methylated adenine (m6A) is the most frequent posttranscriptional modification in eukaryotic mRNA. Turnover of RNA generates N6-methylated AMP (N6-mAMP), which has an unclear metabolic fate. We show that Arabidopsis thaliana and human cells require an N6-mAMP deaminase (ADAL, renamed MAPDA) to catabolize N6-mAMP to inosine monophosphate (IMP) in vivo by hydrolytically removing the aminomethyl group. A phylogenetic, structural, and biochemical analysis revealed that many fungi partially or fully lack MAPDA, which coincides with a minor role of N6A-RNA methylation in these organisms. MAPDA likely protects RNA from m6A mis-incorporation. This is required because eukaryotic RNA polymerase can use N6-mATP as a substrate. Upon abrogation of MAPDA, root growth is slightly reduced, and the N6-methyladenosine, N6-mAMP, and N6-mATP concentrations are increased in Arabidopsis. Although this will potentially lead to m6A mis-incorporation into RNA, we show that the frequency is too low to be reliably detected in vivo. Since N6-mAMP was several fold more abundant than N6-mATP in MAPDA mutants, we speculate that additional molecular filters suppress the generation of N6-mATP. Enzyme kinetic data indicate that adenylate kinases represent such filters being highly selective for AMP versus N6-mAMP phosphorylation. We conclude that a multilayer molecular protection system is in place preventing N6-mAMP accumulation and salvage.

Links and resources

Tags

community

  • @unibiblio
  • @cristiano
  • @fabian
@cristiano's tags highlighted