Conference,

Impact of Miscibility Enhancing Additives on the Flooding Scheme in CO2 EOR Processes

, , , and .
(2018)
DOI: 10.2118/190288-MS

Abstract

Favorable interactions between injection gas and crude oil are crucial for successful carbon dioxide (CO2) recovery processes. The miscibility behavior and thereby the flooding scheme changes with the pressure applied. Although first contact miscibility (FCM) flooding schemes result in most efficient recovery processes, in many cases multiple contact miscibility (MCM) provides economically viable recovery rates already at lower injection pressure. Thus, the determination of the miscibility pressure is a key step in the lab evaluation for CO2 EOR. Miscibility enhancing additives are able to improve the interactions between CO2 and crude oil leading to reduced miscibility pressure. This paper illustrates an easily applicable procedure to identify the pressure required for full miscibility. Using a pressure resistant sapphire cell the phase behavior of mixtures of different crude oils and CO2 with and without additives was investigated at common reservoir conditions. The effect of the additives on the physical phase behavior of CO2/crude oil mixtures and the benefit that can be achieved by their application will be discussed. The miscibility gaps are determined by measuring the phase behavior of CO2/additive/crude oil mixtures as a function of pressure and temperature. The pressure required for full miscibility (physical minimum miscibility pressure (MMPP)), coming along with an FCM scheme, can easily be detected as the pressure above which the miscibility gap closes and a homogeneous mixture is obtained. Another important point, which was determined in this study, was the critical point of the miscibility gap. Its corresponding pressure is the maximum value of the minimum miscibility pressure (MMP) from a thermodynamical viewpoint, above which MCM schemes take place. Hence, knowledge of the critical point of the mixture is an easy to use method to estimate the maximum value of the MMP for a specific reservoir. Adding proper additives to the CO2 improves the miscibility of injection gas and crude oil. By this the miscibility gap shrinks and both the MMP and the MMPP will be reduced significantly compared to the pure CO2/crude oil system. The method presented is a proper, quick, and low-cost alternative to the time-consuming and expensive slim tube experiments commonly used in the oil industry to measure the MMP. Since at pressures above the MMP an MCM procedure is ensured by physics it is the lowest injection pressure that needs to be applied to ensure miscible CO2 EOR. Reducing the MMP and the MMPP using proper additives can lead to a more economical CO2 flood or can even make reservoirs accessible for this technology, which are naturally not.

Tags

Users

  • @puma-wartung
  • @ak_sottmann
  • @yaseenqawasmi

Comments and Reviews