@hermann

Gaussian and non-Gaussian inverse modeling of groundwater flow using copulas and random mixing

, und . WATER RESOURCES RESEARCH 52 (6): 4504-4526 (Juni 2016)

Zusammenfassung

This paper presents a new copula-based methodology for Gaussian and non-Gaussian inverse modeling of groundwater flow. The presented approach is embedded in a Monte Carlo framework and it is based on the concept of mixing spatial random fields where a spatial copula serves as spatial dependence function. The target conditional spatial distribution of hydraulic transmissivities is obtained as a linear combination of unconditional spatial fields. The corresponding weights of this linear combination are chosen such that the combined field has the prescribed spatial variability, and honors all the observations of hydraulic transmissivities. The constraints related to hydraulic head observations are nonlinear. In order to fulfill these constraints, a connected domain in the weight space, inside which all linear constraints are fulfilled, is identified. This domain is defined analytically and includes an infinite number of conditional fields (i.e., conditioned on the observed hydraulic transmissivities), and the nonlinear constraints can be fulfilled via minimization of the deviation of the modeled and the observed hydraulic heads. This procedure enables the simulation of a great number of solutions for the inverse problem, allowing a reasonable quantification of the associated uncertainties. The methodology can be used for fields with Gaussian copula dependence, and fields with specific non-Gaussian copula dependence. Further, arbitrary marginal distributions can be considered.

Links und Ressourcen

DOI:
10.1002/2014WR016820
BibTeX-Schlüssel:
ISI:000380100200017
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation