@sylviazur

A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

, , und . (2019)

Zusammenfassung

In this article we consider one-dimensional random systems of hyperbolic conservation laws. We first establish existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws which involve random initial data and random flux functions. Based on these results we present an a posteriori error analysis for a numerical approximation of the random entropy solution. For the stochastic discretization, we consider a non-intrusive approach, the Stochastic Collocation method. The spatial-temporal discretization relies on the Runge--Kutta Discontinuous Galerkin method. We derive the a posteriori estimator using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. We conclude with various numerical examples investigating the scaling properties of the residuals and illustrating the efficiency of the proposed adaptive algorithms.

Links und Ressourcen

URL:
BibTeX-Schlüssel:
GiesselmannMeyerRohde2019
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation