@hansjakobwagner

Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion

, , , and . Construction Robotics, (2020)
DOI: 10.1007/s41693-020-00038-5

Abstract

This paper discusses the digital automation workflows and co-design methods that made possible the comprehensive robotic prefabrication of the BUGA Wood Pavilion as a large-scale production case study of robotic timber construction. Latest research in architectural robotics often focuses on the advancement of singular aspects of integrated digital fabrication and computational design techniques. Few researchers discuss how a multitude of different robotic processes can come together into seamless, collaborative robotic fabrication workflows and how a high level of interaction within larger teams of computational design and robotic fabrication experts can be achieved. It will be increasingly important to discuss suitable methods for the management of robotics and computational design in construction for the successful implementation of robotic fabrication systems in the context of the industry. We present here how a co-design approach enabled the organization of computational design decisions in reciprocal feedback with the fabrication planning, simulation and robotic code generation. We demonstrate how this approach can implement direct and curated reciprocal feed- back between all planning domains that paves the way for fast-paced integrative project development. Furthermore, we discuss how the modularization of computational routines simplify the management and computational control of complex robotic construction efforts on a per-project basis and open the door for the flexible reutilization of developed digital technologies across projects and building systems.

Description

(accepted for publication)

Links and resources

Tags

community