Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products

, , , , , , und . Science of The Total Environment (2020)


The hydrology of the Third Pole, Asia’s freshwater tower, has shown considerable sensitivity to the impacts of climate change and human interventions, which affect the headwaters of many rivers that originate therein. For example, the Yangtze River has its basin (YRB) experiencing wetness of terrestrial water storage (TWS), which rainfall seems to be the primary source as inferred from the previous studies. Consequently, it is crucial to understand the contributions of each TWS’s sub-domain - i.e., groundwater (GWS); total water content (TWC) stored as soil moisture, ice/snow, and canopy; and the surface water (SWS) storages - on YRB’s wetness. Hence, SWS, from altimetry and imagery satellites, and TWC, from Global Land Data Assimilation System, are inverted considering the same basis function as for TWS from the Gravity Recovery and Climate Experiment, which account for the differences in the resolutions inherent in each product. Furthermore, a “tie-in” signal approach is used to fit the temporal patterns of GWS, TWC, and SWS to TWS (i.e., the observations). Results show improvements in the reconstructed GWS series concerning standard deviation, correlation coefficient, and Nash–Sutcliffe efficiency of 22%, 27%, and 120%, respectively, regarding the use of the TWS-budget equation. The reconstructed time series of GWS, TWC, and SWS present an increase of 1.76, 2.69, and 0.14 mm per year (mm/yr) and that YRB loses water stored at its aquifers 55% of the time (regarding 2003-2016 period) based on the quantile function of storage (QFS). The QFS’s slope shows that TWS has a fast and small storage potential w.r.t. GWS since inland waters and soil moisture reflect the dryness impacting TWS first. Despite the evidence of an increase of 19.05 mm/yr in annual precipitation, which seems to explain the bulk in TWS, further investigation to characterize controls on TWS memory within YRB still necessary.

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation