Optimization of industrial Neural Network simulators for GPGPUs
, , , , , und .
New Horizons in Web Based Learning, Volume 7697 von LNCS, Seite 21-29. Springer Berlin Heidelberg, (Dezember 2011)

This paper introduces the porting of an industrial neural network simulator onto GPUs used in a tool-chain to sort massive amounts of E-mails and other textual data. Compared to other previous work, all steps are being executed on the GPU, achieving overall up to 33× speedup without using any cuBLAS functionality. All the time-consuming routines have been ported onto the GPU, i.e. the training-, the simulation- and the verification-phases, the training being the most time-consuming. It is planned to include these GPU-kernels into the product for special costumer's demands.
  • @amerwafai
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.